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and also as a consequence of the strong fall-off of 
the form factor f with (sin 0)/)t. The higher back- 
ground near the absorption edge, which is also clearly 
visible in Fig. 4, probably arises from the wavelength 
spread of the monochromator and harmonics 
(although 222 is weak) which result in some Yb L 
fluorescence. 

Berkeley, kindly ran the theoretical values of f '  of 
Yb. Dr D. Liberman of Lawrence Livermore National 
Laboratory discussed various aspects of the theoreti- 
cal values with us. Dr M. Bellotto aided in the prepar- 
ation of this manuscript. 

Results and concluding remarks 

The experimental values of the real part of the 
anomalous correction term f '  for Yb determined from 
powder data analyses are 3.3 to 5.1 electron units 
higher than the theoretical values calculated from the 
Cromer & Liberman (1970, 1981) theoretical method 
for K and L edges. These differences are similar to 
those obtained for Sm and Gd using single crystal 
methods (Templeton et al., 1980, 1982). We have 
made some efforts to diminish these differences and 
Dr Liberman tried some modifications in his program. 
However, at present, no agreement can be reached 
for the L edge and the correction terms f '  have to be 
determined experimentally. 

We have shown that synchrotron powder data can 
be used for anomalous scattering studies. Because 
single crystals with the required elements and well 
determined structures are not always available, simple 
compounds with light elements such as oxygen in 
polycrystalline form can be used to obtain directly 
the f '  value at the wavelength needed for single crystal 
and powder structure determination. 

We are indebted to the staff of the Stanford 
Synchrotron Radiation Laboratory for providing 
facilities for this research. Dr D. H. Templeton and 
Dr L. K. Templeton of University of California, 
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Abstract 

On treating electron transmission of non-centrosym- 
metric crystals by the common many-beam dynamical 
theory, it is shown that the influence of inclined 
external or internal crystal boundaries as well as the 
influence of reflections from non-zero-order Laue 

0108-7673/87/050683-08501.50 

zones can be treated as a convenient correction or a 
perturbation of the fundamental (eigenvalue) 
equation by means of appropriate small correction 
terms eg. Further corrections, arising from anomalous 
absorption, are written in a comparable form so that 
the two corrections can be easily compared for various 
conditions, mainly in kinematical or dynamical 
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situations. It is also shown that at symmetric excita- 
tion S_g =sg on neglecting absorption, and the com- 
plex eigenvectors of non-centrosymmetric crystals 
become either 'complex symmetric' or 'complex anti- 
symmetric'. Similar properties known for centrosym- 
metry are thus generalized. 

1. Introduction 

The extended capabilities of electron-microscopic 
imaging and electron diffraction methods available 
today require a re-thinking of some of the methods 
of theoretical interpretation. Particular attention has 
to be paid to usually adopted approximations and to 
the limits of their validity. 

One of the very common approximations neglects 
the usually small difference between the symmetrical 
and the general Laue cases. This means that one 
neglects the fact that the inclination of an external 
or internal crystal boundary affects the boundary 
conditions of the electron waves [conditions more 
recently discussed by Colella (1970)]. Hence it affects 
the excitation errors which enter the fundametal 
(eigenvalue) equation and modifies its solutions, i.e. 
the eigenvalues and eigenvectors (amplitude ratios) 
of the individual Bloch waves, and the correlated 
extinction lengths. The consequences of inclining a 
surface to the fine structure of diffracted beams were 
treated in early papers, e.g. von Laue (1948), 
McGillavry (1940), Kato (1952), Moli~re & Niehrs 
(1954). As argued more recently the sensitivity to 
boundary inclination increases if diffraction arises 
from regions of stronger local curvature or of larger 
inclination of the dispersion surface (Sheinin & Jap, 
1979). Related situations occur, for example, on 
working with weak beams or with many beams (high- 
resolution electron-microscopic imaging, convergent- 
beam electron diffraction). In such cases, 
modifications due to reflections from non-zero-order 
Laue zones have to be taken into account by suitable 
approximations, too. 

Various attempts have been made to treat the eigen- 
value equation of the Bloch waves in these respects. 
Niehrs & Wagner (1955) first showed that in the 
general Laue case, also, the fundamental equation 
can be formulated as an eigenvalue equation and that 
it can be transformed to a Hermitian form of the 
dynamical matrix. This work and further studies 
(Whelan & Hirsch, 1957; Spencer & Humphreys, 
1971; Metherell, 1975; Saldin, Whelan & Rossouw, 
1978; Gj0nnes & Gj0nnes, 1985) confirm that the 
influence of an inclined boundary is usually very 
small. However, owing to unsuitable choices of angles 
or of coordinate systems, conveniently small terms to 
account for such influences have not been obtained. 

The present paper shows how the influence of 
boundary inclination as well as the influence of reflec- 
tions from non-zero-order Laue zones can be 

described by convenient small correction terms. They 
will be treated as perturbations, which method is 
more clearly justified than in the work of Gjeinnes & 
Gjeinnes (1985). Non-centrosymmetry is included. 

2. The fundamental  equation in the general Laue case 

2.1. Usual approximations 

We refer to the wave-mechanical dynamical theory 
of high-energy electron transmission of crystals. From 
the work of Fujiwara (1962), the electron mass mr 
and wavelength A are treated relativistically. The 
known fundamental equation (e.g. Kambe & Moli~re, 
1970) will be written in column-matrix notation 

(U + D(I))C (t) = 0, (2.1) 

where C (t)= column matrix of the amplitude ratios 
C~g of the Bloch wave I to be determined, U = square 
matrix of elements, 

Ugg ' =  Ug_g , =  Vg_g,2mr/h 2, (2.2) 

Vg_g,= Fourier amplitude of the periodic potential 
where non-centrosymmetry and anomalous absorp- 
tion is included (normal absorption is omitted), D ~t) = 
diagonal matrix of elements, 

D(Z) k 2 gg= -(k~')+g) 2. (2.3) 

All vectors of the reciprocal space include 27r, hence 
[g =27r/dhkt. All wave propagation vectors refer to 
the interior of the crystal, i.e. they are corrected for 
refraction by the inner potential term Uo = Vo2rnr/h2: 

k 2= K 2= K2o+ Uo, (2.4) 

where Ko = 27r/A. 
The wave vector k ~t) specific to the Bloch wave l is 

decomposed by the dispersion-surface construction 

k ~t) = k + Akt. (2.5) 

Similarly, the Ewald-sphere construction will be 
applied to the refraction-corrected wave vectors (von 
Laue, 1948) 

Ik+g+sgl-- g. (2.6) 

The vectors sg and Akt which represent the excitation 
errors and the Anpassung respectively must be 
orthogonal to the boundary under consideration as 
known from the boundary conditions. Substitution 
of (2.5) and (2.6) into (2.3) yields 

D(t) = (k+g+sg )2_  (k+ g+Akt)2 gg 

2-Ak2. (2.7) = 2 ( k +  g, sg -Aks)  +sg 

In the usual case known as the high-energy approxi- 
mation, one neglects the quadratic terms so that 

D~t) = 2 ( k +  g, sg - Akt).  (2.8) gg 

In the general Laue case, this restriction has to be 
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checked in detail as will be shown below after evaluat- 
ing (2.8) by means of correction terms. 

2.2. Correction terms eg 

Let us choose a crystallographically fixed Cartesian 
xyz coordinate system whose axis ez is parallel to the 
zone axis of the most strongly excited Laue zone, and 
is positive along the beam propagation direction. The 
normal n of the inclined boundary will be represented 
by spherical coordinates r/, r/' (Fig. 1) as 

nx = sin r/cos r/' 

ny = sin r/sin r/' (2.9) 

nz = COS 7 / >  0. 

As a key formula, we decompose the scalar product 

( k + g , n ) / K = ( e z ,  n)(1-e'g),  (2.10) 
/ where the eg are small correction terms. 

' =-{gz+[(kx+g: , )cos  77, eg 

+ ( ky + gy ) sin r/'] tan r/ } / K (2.11a) 

by taking k~/K = 1 and neglecting (kx/K)2, (ky/K)2. 
Apparently, e~ is comparable to the size of Bragg 
angles Og as long as tan r/ is of the order of unity. 
Since tan r/ ~< 10 as explained below, the e~ can 
reach the order of 0.1. Large leg are also favoured 
by large x and y components of k+g .  

Below we are interested in the g-dependent part 
of (2.1 la) :  

eg = -[gz+(gx  cos r / '+ gy sin r/') tan r/]/K (2.11b) 

= -(n, g) /K(n ,  ez). (2.11 c) 

It should be noted that in the symmetrical Laue 
! 

case, where r /=  0 = r/', corrections eg = - g z / K  = eg 
arise from non-zero-order Laue-zone reflections. 

The corrections will be used now to rewrite DCg~. 
Replacing n of (2.10) by Sg - A k t  and substituting into 
(2.8), one gets 

D ° ) = 2 K [ s ( e ) g - y ( e ) t ] ( 1 - e g )  (2.12) gg 

At this point, eg has been replaced by eg since the 
g-independent part of eg common to all diagonal 
elements can be omitted. 

At the same time, e-dependent excitation errors 
and eigenvalues have been introduced according to 

usual definitions 

s(e)g=(Sg, ez) (2.13a) 

y(e) , - -  (Ak,, ez). (2.13 b) 

The correlation to the known e-independent 'radial' 
excitation error sg = K - k + g  follows (on neglecting 
s 2) from the relationships 

K 2 -  (k+g)2 = (K + ]k+gl)(K - Ik+gl) -- 2Ksg 

= - 2 ( k , g ) - g  2 

=2Ks(e )g (1 -eg ) ,  

where the latter expression is given by comparing 
(2.3) and (2.12) at Akt = 0. The radial excitation error 
is therefore 

Sg= K -  k + g  = - [ 2 ( k , g ) + g 2 ] / 2 K  

=s(eg) (1-eg) .  (2.14) 

Let us return now to the neglect of the quadratic 
terms of (2.7). They have to be compared with the 
small terms 2Keg[S(e)g - y(e)t]  of (2.12) which arise 
from the eg correction. Hence this correction becomes 
reasonable if its terms well exceed ak~l or, m o r e  

simply, if Kegl >> ISg] or Akt .  This condition yields a 
minimum meaningful angle [r/[ of inclination if we 
put IKegl= Igtan wl because of (2.11). Then we have 
[g tan r/] >> Isgl or roughly t,71 > 10g = Brags angle. This 
means that the e s corrections become meaningful if 
the inclination of the boundary exceeds the Brags 
angle by an order of magnitude. 

Similar considerations yield an upper limit of r/. 
Neglect of the quadratic terms in (2.7) is reasonable 
if they are small compared with (g, S g - A k l ) .  The 
latter quantity becomes extremely large "-" gl Isgl if sg 
(or Akt) is nearly parallel to g as it can occur at large 
inclinations r/. Then one neglects, on principle, s 2 ,~ 
g [Sg, i.e. Sg < g.  Substitution of Sg[= sg/cos r/I" 
Sg tan rl], where Sg is the excitation error at r /=  O, 

yields the condition tan r/I < [g/s~l as an upper limit 
for the inclination. As to transmission electron 
microscopy, standard methods of 'dynamical '  imag- 
ing work at Ig/s ,I  = 1/Og~--100 while 'kinematical '  
weak-beam imaging requires IS/Sg[ - 
5 nm-l /0-2 nm -1 =25. Therefore, the corresponding 
boundary inclination in the former and latter cases 
should not exceed 85 and 70 ° respectively in order to 
allow for neglect of the quadratic terms. 

e " " ' ~ / "  e~x 

ez ! n 

Fig. 1. Spherical coordinates r/, 77' of the normal n of the crystal 
boundary. 

2.3. Matrix notation of  the corrected fundamental 
equation 

The following quantities will be arranged as 
diagonal matrices: 

{sg}=s, { e g } - e ,  {Y,}-3', (2.15) 

where the labelling sequence of g corresponds to the 
fundamental equation. Thus, (2.12) reads D(~)/2K = 
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s - , / ( e ) t ( I - e )  on substituting from (2.14) [where 
I = unit matrix and s ( e ) ( I -  e ) =  s due to (2.14)]. The 
fundamental equation (2.1) thus becomes 

(U/2K +s)C ~1) = y(e)t(I - e)C ~t), (2.16) 

where U/2K - W is the off-diagonal of the dynamical 
matrix 

A =- U/2K + s -  W+s.  (2.17) 

The columns of (2.16) can be combined according to 
a suitable labelling sequence of l to form a square- 
matrix equation AC(e) = (I - e)C(e)~,(e), where C(e) 
is the e-dependent square matrix composed of the 
eigenvectors. On neglecting E 2 this rearranges to 

C(e)-1(I+e)AC(e)=~I(e). (2.18) 

This is an eigenvalue equation where the dynamical 
matrix ( I+ e)A is a linear correction of the e-indepen- 
dent A of (2.17). 

Neglect of E 2 in (2.18) limits again the angle ~ of 
boundary inclination. For an estimation, (2.11) will 
be simplified as eg = (g /K)  tan 7/ - 10 -2 tan 7/• To 
obtain e 2< eg, i.e. eg|< 1 needs tan ~1~ 10, r/l~< 

o 2 85. A similar limit has been set by neglecting sg as 
explained above. 

TRANSMISSION OF NON-CENTROSYMMETRIC CRYSTALS 

(2) Centrosymmetry: A = ,i,, inclusion of absorp- 
tion yields 

( : - '  M :  = ~ ( e )  = v(-~ ) = ~ : ~ . U  -~, 

therefore 

~/(e) complex, (7 'orthogonal': ~2 = ~2 -1 
"-. _ (2.22) 
CC = I. 

2.4. Properties of the matrices 

As discussed by Spencer & Humphreys (1971), a 
weak 'asymmetry' of the dynamical matrix results in 
the general Laue case. In our notation, the matrix 
( I+~)A of (2.18) is never Hermitian (as a con- 
sequence of pre-multiplication by l + e ) .  However, 
suitable transformations allow a Hermitian dynami- 
cal matrix to be obtained even in the general Laue 
case as already shown by Niehrs & Wagner (1955). 
In our treatment, A and C can be transformed to 

-= ( I+ e/2)A(I + e / 2 )  -= ~ / + s ( l  +e)  

= W + ( e W + W e ) / 2 +  ( l + e ) s  (2.19a) 

C.--(I-e/2)C(e)  

(7 -1 = C(e)-I(I  + e/2) (2.19b) 

on neglecting e 2. Thus (2.18) transforms to 

~/(e) = e - l X e .  (2.20) 

The symmetry properties of this equation can be 
compared with the symmetrical Laue case. This is 
seen by specifying the following conditions [on 
abbreviating s ( I + e ) = ~  and on writing M as the 
transpose of a matrix M]. ._. 

(1) No anomalous absorption: A * = A  is 
Hermitian. Hence, as known, 

~:- 1M: = ~ (e )  = ~ : , ~ . e : ~ ,  = ,~(e)*. 

therefore 

~/(e) real, (2 unitary: (2-1 = (2 * . (2.21) 

3. Perturbation treatment of the general Laue case 

For solving the eigenvalue equation numerically, 
either (2.20) or (2.18) may be used. It is, however, 
more illustrative to solve it for e = 0 and to treat the 
small correction e as perturbation. The corresponding 
procedure outlined in Appendix 1 requires the case 
of degeneracy Yr = ")'t to be excluded (critical voltage 
effect). Absorption will be neglected; it is treated in 
§ 4 by perturbation also. 

The eigenvalue equation (2.18) is represented by 
(A1.4) on identifying &A - cA, on putting X = 0, and 

c(e)-- c(I+V) 
C(e)-'-= (l-Y)C*. (3.1a) 

3.1. Correction of the eigenvalues. 

Equation (A1.6) yields (by use of AC = C',/, ~2*A = 
~/C*) 

AT1 = ((2*eAC),, = T,((2*eC)u = ((2*AeC)u 

so that 

AV,/ V, : Z Iq ,  =e~ (3.2) 
g 

are real corrections, the signs of which depend on 
the sign of the inclination r/ if gz = 0. 

These corrections disappear although 7/~ 0 in the 
case of 'symmetric excitation' (see Appendix 2) since 
then Ic-~,l  = Iq ,  I in addition to e_g = - e g ,  eo = 0, cf 
(2.11c). 

If, on the other hand, the orientation is far from 
any Bragg position, the kinematical approximation 
C = I, 3't =sg specifies (3.2) as 

y(e)t = s(e)g = s~(1 + %) (3.3) 

in agreement with (2.14). 

3.2. Correction of the eigenvectors 

Equation (A1.7) yields the elements of Y in (3.1a) 
a s  

v, .  = ( ~ * ~ A C ) , , . / ( v , . -  v,) = (~.*~.C),,.v,.l(v,.- v,) 

(by use of t~*eAC = t~*ECt~*AC = t~*e C~/). The same 
results can be obtained if the transformed equation 
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(2.20) is identified with (A1.4) on taking A A -  
( e A + A e ) / 2  and X - - e / 2 .  

In the extreme kinematical case the approximation 
C = I, A =  s makes (2*eAC of (3.1b) diagonal, hence 
the correction of the eigenvectors disappears. 

In the dynamical case of 'symmetric excitation' 
(Appendix 2), the symmetry properties of the eigen- 
vectors in addition to e_g ---- --eg make the Yu, become 
if not zero either real or imaginary as follows: 

If C u) and C u') are of the same type of symmetry, 
C ~ g i C _ g  l, : (C t lCg l , )  8, imaginary corrections arise: 

If C u) and C u') are of different symmetry, C*gtC-gr = 
-(C*lCgr)*, real corrections arise: 

3.3. Specification to the two-beam case 

As an illustrative example we consider the two- 
beam approximation. In this case, non-centrosym- 
metry can be eliminated by a suitable choice of origin 
for the Fourier expansion of the lattice potential. The 
absorption-free A and C become real, 

[ 0 o'0/2] (3.6) 
A =  o'0/2 sg j 

[C02 C011= r cosO s i n a i  
C =  Cg2 CglJ [_-sin O cos 

=2-1/2[  (a+Wr) 1/2 ( l - -w,)  1/2] 
_(1_  w,)U 2 (1 + wr),/2j, (3.7) 

where 

o-o=- I U, ll K 
cot 20  -- w = sg/o-o = sg:~g/2zr 

cos 20 = w~=-- w / ( l + w : )  1/2 

Indices 1 and 2 refer to the upper and lower branch, 
respectively, of the dispersion surface. 

The known eigenvalues and anomalous absorption 
terms can be written as 

Re y, ,2=(sg+o-)/2=(w~+ 1)o-/2 (3.8) 

Im yl,2= + U'g /2K( l+w2)  u2, (3.9) 

where 

o--= O'o(1 + w2) 1/2. 

The correction terms (2.11b) read (if ex is along g) 

Co=0, eg = - (cos  B' tan 71)A/dhk t. (3.10) 

Following the comment to (2.12) we can add the small 
quant i ty  - e g / 2  to both eo and eg which thus become 

more symmetrical corrections e_ and e+ respectively: 

e~: = Weg/2 = +(cos r/' tan rl)h/2dhkl. (3.11) 

The above expressions yield explicitly 

C*eC= (1 + w2) u2" (3.12) 

The diagonal elements yield the relative correct ions  
of the eigenvalues 

(Ay/3/)1,2 = q: Wre_ = :~ Wr(COS ~7' tan ~7)A/2dhkl. 
(3 .13)  

As generally stated above these corrections disappear 
at the Bragg position ('symmetric excitation') where 
w = O =  Wr . 

If w # 0, the difference 3/1-3/2 = o- is corrected to 

( 3/1 + A3/1)--(3/2 "~ A3/2) = 3/1" 3/2-- Wre-( 3/1 + 3/2) 

-~ O - -  WrSgE_ 

= o-(1- wZ e_). 

Hence the w-dependent extinction distance ~:e~= 
27r/o- is corrected to 

~eef( e ) = scefr(1 + w2e_ ) 

= ~ef~[1 + w2(cos r/' tan rl)A/2dhkt]. (3.14) 

It is seen that the extinction distance increases or 
decreases if ~q > 0 or ~7 <0 ,  respectively. This con- 
clusion agrees at least qualitatively with the experi- 
ments of Kim, Perez & Sheinin (1982). At a given 
inclination rt', rt the correction of s¢~ maximizes for 
extreme kinematical conditions where we>> 1, 2 Wr"- 1. 
This change may amount to up to --10% if tan rt ~" 1. 

The correction (3.1b) of the eigenvectors is given 
by substitution from (3.12) and (3.11), 

Y12,21 = e_(1 + Wr)/2 (1 + w2) u2 

= (cos ~7' tan rt)(1 + Wr)A/4dhkl(1 + W2) 1/2. 

(3.15) 

These real corrections disappear at large ]w[ >> 1 but 
not at the Bragg position where Y becomes symmetric 

Y21 = Y12 = (cos 7 '  tan n)A/4dhk~. (3.16) 

4. A comparison with anomalous absorption 

4.1. Absorption correction in the symmetrical Laue case 

Phenomenologically, anomalous absorption can be 
taken into account by introducing imaginary potential 
terms iU'gg, (Yoshioka, 1957) which can be treated as 
a perturbation of the eigenvalue equation (which has 
to be solved for the absorption-free case). In our 
notation the U'gg,/2K will be represented by a matrix 
W'. Following Appendix 1, we identify in (A1.4) 
AA-= iW' and X = 0 in order to determine A~, and 
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Y =  iY' from (A1.6) and (A1.7) respectively: 

y, = Re y, + i(C*W'C),, (4.1) 

C --> C(I + iY'), C- '  --> ( I -  iY')C* 

Y~r = (C*W'C),,,/(y,,- y,) (4.2) 

in agreement with known solutions (e.g. Wilkens, 
Katerbau & Riihle, 1973) and assuming Yr # Y~. 

A simpler matrix multiplication as well as some 
physical conclusion can be obtained if we use the 
rough approximation 

W' = a 'W, (4.3) 

where 0 < a ' < l ,  as in the case of the two-beam 
approximation. The matrix product C*W'C can then 
be decomposed according to the absorption-free 
eigenvalue equation C*WC = ~,-C*sC. Equations 
(4.1), (4.2) thus yield 

Im Yz = a' Re Yt - a'(C*sC)n 

= a ' R e  y,-a'Y~ sglc ,l 2 (4.4) 
g 

Y~r=a'(C,*sC)u,/(yt-Vr). (4.5) 

Some specific cases will be considered. Anomalous 
absorption is a dynamical phenomenon. It disappears 
at extreme kinematical conditions where C = I, Re ~, = 
s can be used in (4.1)-(4.5) to show that both Im ~, 
and Y' become zero. 

Let us suppose dynamical conditions of 'symmetric 
excitation' (see Appendix 2). If in that case the Bragg 
condition is satisfied for the smallest g all further 
reflections contribute with sg < 0. Hence the second 
member of (4.4) becomes > 0, which means enhance- 
ment of absorption, but the first member can be 
modified by dynamical interaction in a more compli- 
cated way, as known. 

The corrections iY~r of the eigenvectors become (if 
not zero) either imaginary or real if the correlated 
C (~) and C (r) are of equal or of different type of 
symmetry, respectively. [To be shown as in the case 
of (3.4), (3.5).] In the two-beam case, (4.5) yields 

Y'zl.t2 = + a'Sg/2Cr(1 + w2) 1/2 

=+a'w/2( l+w2) .  (4.6) 

Hence, Y' becomes zero at w = 0 and at w2>> 1, while 
at w I = 1 maxima I Yu,I = a'/4 arise. 

4.2. Comparison of the absorption and ~ corrections 

Since the corrections due to anomalous absorption 
and e were made by first-order perturbation, they 
simply add if applied simultaneously. The eigen- 
values are thus corrected by 

ATt=(C*eC)nReT~+i(C*'W'C)u (4.7a) 

or, on approximating W ' =  a'W and using (4.4), 

Ay, = ((2*eC),, Re y, + ia'[Re y , -  (C*sC),]. (4.7b) 

For dynamical conditions, the first term is usually of 
lower magnitude than the absorption term. This situ- 
ation reverses, however, for kinematical conditions 
where the E correction maximizes while the absorp- 
tion tends to disappear. 

The eigenvectors are corrected by combining (3.1 b) 
and (4.5) (if W '=  a'W): 

(Y+iY')n,=[C*(e Re "yl,-ia's)C]lr/(Tr-T,). (4.8) 

As in the case of the eigenvalues, both corrections 
are comparable if e~ and a' are of comparable magni- 
tude. As stated above both corrections disappear at 
extreme kinematical conditions. In the dynamical 
case of 'symmetric excitation' both corrections simul- 
taneously become real or imaginary, depending on 
the symmetry of the eigenvectors. If the Bragg condi- 
tion of the two-beam case is satisfied the absorption 
correction of the eigenvectors disappears but their 
dependency remains. 

5. Concluding remarks 

The inclination r/ of any crystal boundary (general 
Laue case) and also reflections of non-zero-order 
Laue zones modify the eigenvalue equation by a weak 
correction owing to a diagonal matrix of elements e~. 
The inclination-induced part of the correction 
becomes meaningful if 177[ well exceeds the Bragg 
angles 0g. In this frequent case, factors like 1/cos 0g 
often used for multiplying the off-diagonal elements 
of the dynamical matrix become meaningless. The e 
corrections fail if exceeds about 70 or 85 ° in the 
kinematical or dynamical case, respectively, in elec- 
tron-microscopic imaging. 

The corrected eigenvalue equation can be trans- 
formed to a Hermitian form of the dynamical matrix 
(if absorption is neglected). 

Independently of this form, solutions can be 
obtained from the uncorrected equation by means of 
perturbation. The latter method shows that the correc- 
tions of the eigenvalues are real. 

On introducing anomalous absorption by corre- 
sponding, sometimes simplified, perturbation, close 
comparisons to the e corrections can be made with 
the following results: 

At extreme kinematical diffraction conditions the 
absorption corrections naturally disappear while the 

corrections disappear for the eigenvectors but not 
for the eigenvalues. The corresponding two-beam 
extinction length may be modified up to about + 10% 
for extreme r/<> 0. 

Dynamical diffraction conditions can be usefully 
specified to 'symmetric excitation' s_g = sg where any 
eigenvector becomes either 'complex symmetric' or 
'complex antisymmetric' (at non-centrosymmetry 
without absorption). 

In this case, the e correction of the eigenvalues 
disappears. The remaining corrections to the eigen- 
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vectors (due to e and absorption) are made by real 
and imaginary elements, depending on the symmetry 
of the related eigenvectors. 

The author is indebted to Dr K. Scheerschmidt for 
stimulating discussions. 

APPENDIX 1 
First-order perturbation of an eigenvalue equation 

We suppose an eigenvalue equation 

C - l A G  = ~  (AI.1) 

of known solutions Cgl and Yz, where degeneracy 
yr = Yt does not occur. If a matrix AA of small ele- 
ments IAAgg, .< Agg, is added to A the modified solu- 
tions will be written as 

(A1.2) 
C(A) = (exp X)C(exp V), 

where X and Y are square matrices of small elements 
Xgg, < 1, I Yw < 1, and Yu = 0. The first-order evalu- 

ation 

C(A ) = (I + X)C(I + Y) 
(A1.3) 

C(A)-I  = ( I - Y ) C - I ( I - X )  

violates C ( A ) C ( A ) - I = I  in quadratic and higher- 
order terms of X and Y. Substitution into (AI.1), 

~, + A~, = ( I -  Y)C -~ ( I -  X)(A + AA)(I + X)C(I + V), 

(A1.4) 

yields perturbation to first order of AA, XC, CY etc: 

A~ = -Y~, +,,/Y + C - ~ ( - X A +  AX + AA)C 

= - y , , / +  ~,Y- C-1XC~, + ~/C-1XC + C-~AAC. 

(A1.5) 

Since A',/is diagonal and ~Y - Y~ as well as ,,/C- ~XC - 
C-1XC~/is diagonal-free, (A1.5) decomposes, yield- 
ing the unknown 

A y t = [ C - ~ ( A A - X A + A X ) C ] n  =(C-~AAC)u (31.6) 

Y w = [ C - I ( A A - X A + A X ) C ] n , / ( T r - T t )  (A1.7) 

provided Yr-Yt is large enough to satisfy I Yu, < 1. 
The Art are independent of X. Hence X can be 

arbitrarily used for transforming C or A due to (A1.3), 
(A1.4). 

If A is Hermitian, C becomes unitary C -~= C*. If 
AA is also Hermitian and X skew-Hermitian or zero, 
C * ( A A - X A +  AX)C becomes Hermitian, hence A~, 
is real and Y = -Y* is skew-Hermitian. Then, unitarity 
C ~ ) * = ( I - Y ) C * ( I - X ) - - C ( A )  -l is satisfied in 
linear terms of  X and Y. 

APPENDIX 2 
Symmetry of the eigenvectors (symmetrical Laue case) 

For centrosymmetric crystals, it is known (e.g. 
Metherell, 1975) that any eigenvector becomes either 
symmetric or antisymmetric if a Bragg position is 
satisfied within a row of systematic reflections. Let 
us generalize this behavior by allowing for non- 
centrosymmetry for all reflections of the zeroth Laue 
zone and supposing 'symmetric excitation'. The latter 
condition means that S_g--Sg exists or can be 
achieved by suitable indexing of g(hk l ) .  A possibility 
of symmetric excitation is to satisfy the Bragg condi- 
tion for any go of this Laue zone while keeping the 
plane of k, k +  go orthogonal to the zone. The simple 
case where k is along the zone axis is included (for- 
mally go = 0). Absorption will be neglected. 

Under the condition S_g = Sg, a reversal of sign g 
does not alter the diagonal s of. the dynamical matrix 
A but it changes A into A* since Ug_ z, is changed 
into Ug,_g = U*_g,. The eigenvalues ~, = C*AC are real 
and then read 

~l ~ * - * * Agg,C glC g,l - ~ -g,.l = Agg,C_g.lC 
g,g' g,g' 

• * = X  * * = Agg, Cglfg,t .  
gg' 

It follows that C-g,z = +C*~ since an eigenvector is 
determined except for its sign. Thus there are two 
possibilities: 

'complex symmetric'  eigenvectors of 

C-g,t = C*gt, Im Col = 0, (A2.1a) 

'complex antisymmetric" eigenvectors of 

C-g,t = -C*~ ,  Re Cot = 0. (A2.1 b) 

Specification to centrosymmetry (C real) and to sys- 
tematic reflections is known (e.g. Metherell, 1975). 

A number of consequences follow concerning the 
crystal-defect-induced scattering (transition) of Bloch 
waves. For example, transitions forbidden at cen- 
trosymmetry can be allowed due to non-centrosym- 
metry (Kiistner, 1986). 
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Abstract 

Molecular dynamics has been used to estimate the 
properties of a two-dimensional crystal exhibiting a 
second-order soft-mode phase transition. Using a 
vibrational potential for the crystal which is tem- 
perature independent, the essential features observed 
experimentally in the coherent scattering from 
analogous real systems are reproduced in the com- 
puter simulation. The potential consists of an effective 
one-particle component with multiple minima and a 
harmonic nearest-neighbour coupling component. It 
is emphasized that the coupling component is essen- 
tial to reproduce correctly the qualitative features not 
only of the diffuse scattering, but also of the mean- 
square displacements as a function of temperature. 
The condition for appearance of a cusp at Tc in the 
mean-square displacement versus temperature curve 
is discussed and the formation of superlattice peaks 
in the diffuse scattering is demonstrated. 

Introduction 

Crystallographic studies of structural phase transi- 
tions can provide information on the nature of the 
phase change through measurements of: 

(a) the structure of the high- and low-temperature 
phases (with associated measurement of order par- 
ameters); 

(b) the temperature factors as a function of tem- 
perature; and 

(c) the diffuse scattering as a function of tem- 
perature. 

The crystallographic literature contains many 
examples of such experimental studies, especially in 
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the case of structural work. As experimental tech- 
niques become more efficient and data more reliable, 
it is apparent that more information could potentially 
be extracted from detailed measurements than is cus- 
tomary at present. For example, diffuse scattering can 
provide information on the pair-displacement corre- 
lations, and ultimately the pair-correlation function, 
and the temperature factors can help to establish 
whether soft modes are present and which atoms are 
involved. 

Recognizing that a need exists for parallel theoreti- 
cal studies of structural phase transitions, we aim in 
the present work to calculate crystallographic proper- 
ties [namely, mean-square displacements (MSD's) 
and coherent scattering distributions] for a model 
system possessing a second-order soft-mode struc- 
tural phase transition. The work follows on from 
calculations on a one-dimensional system (a chain) 
of coupled anharmonically vibrating atoms. MSD's, 
one-particle probability densities, effective one- 
particle potentials and fourth-order cumulants of the 
displacements were calculated (Mair, 1983a, b) as 
well as pair-displacement correlations (Johnson & 
Mair, 1985) and disorder diffuse scattering (Mair, 
1984a). The present model is an extension of the 
system to two dimensions and so ordering can occur 
at a finite temperature, To. Unlike the one- 
dimensional case, which could be treated in a semi- 
analytical way, the two-dimensional calculations are 
made with the technique of molecular dynamics. 

The details of the model and numerical methods 
have already been reported (Mair, 1986) so only an 
outline of these will be presented. Mair (1986) also 
gives results on MSD's, some of which are repeated 
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